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Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical
technique �Z scan� distinguishing the index variations due to the temperature gradient and the mass gradients.
A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffu-
sion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a
sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the
slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The
difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of
interaction of the ball of amphiphilic molecules with the solvent.
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I. INTRODUCTION

In the physical chemistry of self-assembled amphiphile-
solvent systems, the concept of the critical micellar concen-
tration �CMC� �1� is one of the most interesting from both
the fundamental and technological points of view. Let us
consider, for example, a lyotropic-type mixture �2� of a sur-
factant and water. The CMC is defined as the molar concen-
tration of amphiphilic molecules �c� above which they self-
assemble into micelles. When c is greater than the CMC, the
concentration of micelles increases and that of isolated am-
phiphilic molecules remains almost constant.

Different theoretical approaches have been used for the
understanding of the micellization process �1,3–6�. From the
experimental point of view, some properties of amphiphile
solutions, such as detergency, equivalent electrical conduc-
tivity, high-frequency conductivity, surface tension, osmotic
pressure, and interfacial tension, exhibit a remarkable behav-
ior as the amphiphile concentration approaches the CMC �7�.
In actual mixtures, there is no uniquely defined concentration
of amphiphiles at which all these properties present a drastic
modification in their behavior.

More recently, nonlinear optical properties of amphiphilic
solutions were investigated at amphiphile concentrations
around the CMC. Using a mixture of potassium laurate
�COOK�CH2�10CH3� �KL� and water, it has been shown �8�

that the presence of micelles in the solution changes the be-
haviors of the thermo-optic coefficient and of the nonlinear
index of refraction with respect to those of the system when
c is below the CMC.

The Soret or Ludwig-Soret effect �9,10�, also called ther-
modiffusion or thermal diffusion, designates a flow of matter
driven by a temperature gradient. In a binary fluid mixture,
characterized by a mass fraction � of one of its components,
subjected to a temperature gradient, a flow of matter is ob-
served for this component in the fluid, parallel to the tem-
perature gradient. The Ludwig-Soret effect couples the flow
of matter to the temperature gradient in the system. Besides
its fundamental interest in physical chemistry, this phenom-
enon also has technological applications �11,12�.

The Soret effect for colloidal dispersions, measured by the
Soret coefficient ST, is 102–103 times stronger than that ob-
served in molecular systems such as mixtures of gases and
liquids �13�. Depending on the system, the Soret effect may
be thermophobic �when colloidal particles tend to gather in
the colder part of the sample� or thermophilic. Different ex-
perimental techniques can be used to measure ST, e.g., the
thermogravitational column �14�, forced Rayleigh scattering
�15,16�, and more recently single-beam Z scan �ZS� �17,18�,
thermal lensing �19�, and thermal pumping and fluorescence
�20�.

Although some efforts have been made to investigate the
Soret effect in micellar systems �21–24�, to the best of our
knowledge, there is not in the literature a systematic study of
the thermodiffusion phenomenon around the CMC in a lyo-
tropic mixture. In other words, what are the behaviors of the
concentration gradients of free amphiphilic molecules and
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micelles due to the temperature gradient, as the CMC is
crossed? If the thermodiffusion phenomenon is sensitive to
the transformation from free molecules to micelles, it could
be used to determine the CMC.

A complication exists in the study of thermodiffusion in
micellar systems: the system is at least ternary, with the sol-
vent, the free amphiphilic molecules, and the micelles. In
such a system, the usual phenomenological framework in
which the Soret coefficient is defined cannot be straightfor-
wardly applied. That complication is present in all complex
fluids; hence the need to implement a more general frame-
work in order to deal with thermodiffusion in complex fluids.

The present paper thus serves two purposes. The first one
is to extend an experimental technique originally devised for
binary mixtures, and the second one is to evidence micelli-
zation using a physical property not investigated heretofore.
Discussing specific quantitative theories of thermodiffusion
or of the micellization process is outside the scope of this
paper. Specifically, we shall use the ZS technique to investi-
gate thermodiffusion in a mixture of amphiphilic molecules
and a solvent, as a function of the amphiphile concentration.
The paper is organized as follows. Section II outlines the
phenomenological framework for handling thermodiffusion
in a multicomponent fluid. That framework is used to extend
the ZS technique to a multicomponent fluid. �Details about
our phenomenological equations of thermodiffusion are pro-
vided in the Appendixes.� Then, Sec. III describes the tech-
nical aspects of the experiments and the samples studied. The
results are presented in Sec. IV, which shows how transport
coefficients can be extracted from the optical signal. The
interpretation of the Soret response shows that it is consistent
with the present knowledge of the micellar system and of the
thermodiffusion phenomenon. Conclusions are drawn in Sec.
V.

II. PHENOMENOLOGICAL FRAMEWORK

In a binary mixture, the Soret coefficient ST is defined
as the relative slope of the steady-state profile of the
denser component due to the temperature gradient as
ST=−�� / ���T�, where T is the absolute temperature and �
is the mass fraction. As the current density J of the denser
component is a linear combination of �� and ��T, namely,
J=−D��−DT��T �9,10�,

ST = DT/D , �1�

where DT and D are the thermodiffusion coefficient �in
m2 s−1 K−1� and the ordinary diffusion coefficient �in
m2 s−1�, respectively �25�. That current equation is expected
to hold in the dilute limit ��1, with constant �i.e.,
�-independent� diffusion and thermodiffusion coefficients.

Let us define the Soret function of the solute as FS���
=−�� /�T �in a previous work �26�, we named this function
the concentration-dependent Soret coefficient�. It is a func-
tion of � at fixed T. By measuring FS���, one can verify that
it is proportional to �.

In the case of a multicomponent mixture �of more than
two components�, the phenomenological formulation of the
problem becomes more complex �27,28�. Leahy-Dios and

co-workers �29� recently measured the ordinary diffusion
and thermodiffusion coefficients of ternary mixtures using
the thermogravitational-column technique. In a ternary or
more complex mixture, we shall retain the operational defi-
nition of the Soret function of the solute i as

FS,i = − ��i/�T �2�

in the steady state. That function now depends not only on �i
but also on the � j of the other solutes j� i. This comes about
because the ordinary diffusions of the solutes are coupled by
nondiagonal diffusion coefficients Dij. Based on the phenom-
enological laws of multicomponent diffusion and thermodif-
fusion, Appendix A expresses the expected dependence of
FS,i on the � j’s.

In a ZS experiment, the sample is illuminated by a Gauss-
ian laser beam, giving rise to a change in the index of refrac-
tion �n�r , t� where r and t are the radial distance to the beam
axis and the time. The change �n is due to the dependence of
n on the incident intensity I �nonlinear optical effect�, on the
temperature T, and on the local solute mass fractions �1�r , t�,
�2�r , t�, and so on. If �n is small, it can be written as a linear
expansion:

�n�r,t� = � �n

�I
�I�r,t� + � �n

�T
��T�r,t� + � �n

��1
���1�r,t�

+ � �n

��2
���2�r,t� + ¯ . �3�

That expansion is the generalization of the one used in pre-
vious work �18,30�, where only one solute was present. Here,
the mass-fraction changes ��i are caused by the Soret effect,
according to ��i= ���i /�T��T. In the steady state or, more
generally, in the quasisteady state used in the two-time-scale
analysis �16�, we have ��i=−FS,i�T, where FS,i is the Soret
function of solute i. As the lensing effect is due to

�n�r,t� = � �n

�I
�I�r,t� + �� �n

�T
� − � �n

��1
�FS,1

− � �n

��2
�FS,2 + ¯��T�r,t� , �4�

the ZS optical signal involves the Soret functions FS,i of the
N solutes through the following linear combination:

� = 	
i=1

N

FS,i� �n

��i
� . �5�

As we shall see shortly, the ZS method is able to distinguish
the temperature-lens contribution to �n and the matter-lens
contribution, proportional to �. The experiment does not dis-
criminate the contributions in �. In Sec. IV, the measured
���1 ,�2 , . . .� is equated to a phenomenological expression
involving the transport parameters of the mobile species, and
those parameters are inferred from ���1 ,�2 , . . .�.

During the ZS experiment, the sample is illuminated by a
laser beam during a time period �t. The time constants as-
sociated with the thermal lens �tc� and the thermal diffusion
phenomena �tso� for dye-doped lyotropics �we will come
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back to this point later on� are of the order of 5 ms and 5 s,
respectively. So, for laser pulse widths �exposition� tc��t
� tso �in our case, �t
40 ms�, � in the illuminated sample
volume is expected to be approximately constant along the z

direction �sample thickness much smaller than the Rayleigh
length of the laser Gaussian beam�.

For tc��t� tso, the optical transmitted intensity 	�z , t� in
the far field in a ZS experiment is written as �18�

	�z,t� =
	�

1 − 2
� CN

�1 + 
2�2 +
CT

1 + 
2

t

t + 2tc
� + �1 + 
2�� CN

�1 + 
2�
+

CT

1 + 
2

t

t + 2tc
�2 , �6�

where 	� is the sample transmitted intensity when the sample
is at �z��z0, at any time t��t, 
=z /z0, CN, and CT are
dimensionless parameters defined as

CN =
8bz0P


�0
4

�n

�I
, �7�

CT =
bz0�P


�0
2�

�n

�T
, �8�

where P, �, b, �, and �0 are the incident power, the linear
absorption coefficient, the sample thickness, the thermal con-
ductivity, and the beam waist at the focus.

For �t� tso, the optical transmitted intensity 	�z� in the
far field in a ZS experiment is written as �30�:

	�z� =
	�

1 − 2
A + �1 + 
2�A2 , �9�

with

A =
CN

�1 + 
2�2 +
CT

1 + 
2 +
CS�

�1 + 
2��� + 2tc�
, �10�

where �=2�t and the dimensionless parameter CS is, for a
binary mixture,

CS = −
bz0�P

2
��0
2FS���

�n

��
. �11�

At this point we will generalize Eq. �11� to account for mul-
ticomponent mixtures �i.e., a solvent and N solutes�, on the
basis of Eq. �4�. Therefore CS can be expressed as

CS = −
bz0�P

2
��0
2�	

i=1

N

FS,i
�n

��i
� = −

bz0�P

2
��0
2� . �12�

Note that, if ci denotes the molar concentration of component
i, �i��n /��i�=ci��n /�ci�.

The normalized transmitted intensity is defined by

	N�z,ts� =
	�z,ts�

	�
, �13�

and 	N�z , ts� exhibits a typical peak-valley behavior versus z,
with a peak-to-valley amplitude where ts is the time for

which the transmitted intensity reaches a saturation value
�tc� ts��t�.

In this framework, CT is determined independently and
two scans are needed to obtain CS: the first one with tc
��t� tso, determines CN, and a second run, with �t� tso,
determines CS. The contributions of the nonlinear, tempera-
ture, and matter lenses are additive in Eq. �10�, but they are
not in Eq. �9� since 	 is a nonlinear function of A. Section
IV B will show on a specific example how 	N�z , ts� depends
on CN, CT, and CS.

III. EXPERIMENT

The sample investigated is a mixture of potassium laurate
and distilled and deionized water. Potassium laurate was syn-
thesized from lauric acid �Merck� and recrystallized three
times in absolute ethanol �Merck�. The KL concentration �c�
was varied from 2.46�10−3 M to 3.2�10−1 M. For c�cc
=24�10−3 M �where cc is the CMC� �31�, corresponding to
�c=6�10−3, KL molecules form spherical micelles. At the
highest KL concentration, which is about 10cc, we expect the
molar concentration of free KL molecules to be still much
larger than that of micellar KL. The errors in weighting are
smaller than 0.5%. Samples were used within 2 days after
preparation. All the measurements were performed at 23 °C.

As the lyotropic light absorption, at the wavelength used
in our experiment, is very low �typically �ly =10−3 cm−1 at
�=532 nm�, the Congo Red �CR� dye �Aldrich Co., purity
�91%, molecular mass 696.665� was added to the mixture.
The dye, used to increase the sample absorption coefficient,
is added at the fixed concentration of 40 �M in all the
samples. At this concentration we have about 1.4�106 water
molecules per CR molecule in the sample. The typical mass
fraction of the CR molecules is 2.8�10−5. We have checked
that, at this concentration, CR modifies only the optical ab-
sorption of the mixture but not the phase sequence of the
mixture. The absorbance spectra of the CR were measured in
pure water and in solutions of KL at concentrations smaller
and larger than the CMC. Particularly in the visible region of
the spectra �450���600 nm�, the CR absorbance did not
exhibit a noticeable change, remaining the same within our
experimental accuracy of about 0.4%. Concerning the phase
diagram �temperature versus the KL concentration� of the
lyotropic mixture with and without the CR, at least at the
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concentration used in our experiments, the phase sequence
boundaries did not change their loci, within our experimental
accuracy. In this case, the accuracy in the temperature is
about 0.2 °C and in the KL concentration is about
0.04 wt %.

The samples were prepared in a slab geometry, forming a
200-�m-thick film. Our experimental setup allows us to
make automated measurements with temporal resolution.
The laser beam �Millennia II, cw, �=532 nm, from Spectra
Physics� was modulated at millisecond �second� time scales
by a mechanical chopper �shutter�. The sample was scanned
around the focal point by a translational unit. The chopper or
shutter provides a square wave pulse, exhibiting a periodical
succession of “on” and “off” states of equal �t duration. The
sample position z is fixed during a sequence of one on state
and one off state. The experiment consists in measuring the
sample transmitted intensity 	�z , t� as a function of time dur-
ing the on period, at each �fixed� sample position z. A pho-
todetector measured the transmitted intensity of the sample
after a pinhole positioned on the beam propagation axis in
the far-field condition. The signal acquisition was made by
an oscilloscope and a GPIB board.

Our analysis depends on the characterization of the in-
duced nonlinear, temperature, and matter lenses, which have
different characteristic times. So it is necessary to make two
Z-scan measurements on each sample. In the present case we
choose the time intervals of �t=44 ms and 4.4 s. Those
values, which characterize the time constants of the different
physical phenomena investigated, have to be experimentally
obtained. In the case of ferrofluid samples �30� they are typi-
cally of the order of the millisecond and the second, respec-
tively. In a typical ZS transmittance curve as a function of
time �at fixed z� there is an initial increase �or decrease� of
the transmittance, which tends to a constant limiting value.
The time interval at each time scale is chosen as that when
the limiting value of the transmittance is fully attained. The
total time of a ZS experiment is about 10 and 40 min with
the time intervals of 44 ms and 4.4 s, respectively.

In the planning of the experiment, an important point is
the incident power of the laser beam on the sample. The
incident power on the sample was set at P=42 mW. This
value was chosen taking into account experimental condi-
tions such as the absence of spherical aberration and of con-
vection, and the condition that the transport coefficients mea-
sured should be independent of P. The other parameters used
in the experiments are b=200 �m, z0=0.786�0.012 cm,
and �0=36.48�0.28 �m.

The linear optical absorption ��� of the samples is mea-
sured with a uv-2800 single beam scanning uv-visible spec-
trophotometer �at �=532 nm�. The linear refractive index
�n0� and the thermo-optic coefficient ��n /�T� of the different
samples �at �=589 nm� are measured using an Abbe refrac-
tometer �Carl Zeiss� with a temperature-controlled device
�thermal bath Brookfield TC 500−0.01 °C accuracy�. The
parameter �n /�� is also measured in the different samples
investigated.

IV. RESULTS AND DISCUSSION

A. Aqueous solutions of CR

In this section, the Soret coefficient of the CR molecules
in water is determined by using the ZS technique. This is a

simpler case since only two types of molecule are present in
the system. The ZS experiments, on both time intervals, gave
the typical peak-valley curves. The measurements of 	N�z , t
=0+�, for �t=44 ms, showed an almost constant value, in
our experimental conditions, indicating that the fast
absorption-relaxation phenomenon is very weak. From these
results we evaluate CN�10−2. This value is, at least, two
orders of magnitude smaller than those found in ferrofluids
�26� and ferrolyotropic mixtures and, therefore, we may dis-
regard the first term in the right-hand side of Eq. �10�.

Figure 1 shows the measured values of the refractive in-
dex of the aqueous solutions of CR as a function of the
temperature �Fig. 1�a�� at a fixed CR concentration, and as a
function of the CR concentration �Fig. 1�b�� at a fixed tem-
perature �23 °C�. The values of �n /�T and �n /��CR, where
�CR is the mass fraction of the dye, are −�1.07�0.07�
�10−4 K−1 and 0.511�0.031, respectively, obtained from
the best-fit procedure. The measured optical absorbance of
an aqueous solution of CR at the fixed value cCR

� =40 �M
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FIG. 1. Index of refraction of aqueous solutions of CR �a� as a
function of the temperature at a fixed CR concentration, and �b� as
a function of the CR concentration at a fixed temperature �23 °C�.
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�which corresponds to �CR
� =2.8�10−5� is 1.18�0.02 cm−1,

and we used �w=0.6 W m−1 K−1 of water. With these values
we can calculate the nondimensional parameter CT for the
aqueous solution of the dye. To obtain CS we followed the
procedure described in Ref. �26�. As we are dealing here with
a binary mixture, Eq. �11� is written

CS = −
bz0�P

2
��0
2ST,CR�CR

� �n

��CR
, �14�

where ST,CR=DT,CR /DCR is the Soret coefficient of the dye.
We found ST,CR=0.75�0.12 K−1.

B. Aqueous solutions of KL and CR

Figure 2 shows a typical ZS experimental result 	N�z , ts�
of a lyotropic mixture of water, KL, and CR, with �KL below
the CMC, with �t=4.4 s. Similar results are obtained for
�t=44 ms and above the CMC. In all of them, the peak-
valley behavior is present. The solid line shows the predic-
tion of Eq. �9� with CN and CS as obtained from two scans
�the parameter CT is obtained independently�. We find that
CN�10−2 and CN is henceforth neglected in Eq. �10�. The
dotted and dashed lines in Fig. 2 show the prediction of Eq.
�9� with other values of the parameters CT and CS. Thereby
one can see how sensitive the normalized transmittance is to
those parameters. Also here, the measurements of 	N�z , t
=0+�, for �t=44 ms, showed an almost constant value, in
our experimental conditions.

The ZS analysis of the thermal-lens signal allows us to
isolate a matter-lens contribution CS due to the thermodiffu-
sion of the solutes in the radial temperature field, propor-
tional to � �see Eq. �12��. In Fig. 3, � is plotted as a function

of the mass fraction �KL of the surfactant �i.e., free KL below
the CMC, and free KL plus micellar KL above the CMC�,
using a linear scale for �KL. To a good approximation, the
���KL� function can be represented by means of two linear
fits,

� = �7.82 � 1.63� � 10−6 − �4.47 � 0.36��KL, �15�

� = − �7.95 � 1.08� � 10−5 + �4.47 � 1.93� � 10−4�KL,

�16�

below and above the CMC, respectively. Those fits show a
discontinuity at the CMC, which will be discussed in Appen-
dix B. The two following sections analyze � before and after
the CMC, respectively.

1. KL concentrations below the CMC

The ratio of the numbers of KL and CR molecules is of
the order of 2�102. Figure 4�a� shows the experimental val-
ues of the index of refraction of four solutions as functions of
the temperature. These data are used to determine �n /�T,
which was found to depend on �KL �Fig. 4�b��. It varies from
about −1.10�10−4 to about −1.25�10−4 K−1, and each
value was used to calculate the corresponding CT. The data
of Fig. 4�a� were also used to determine �n /��KL, which was
found to be 0.18�0.01. The measured optical absorbance of
the aqueous solution of KL and CR at �CR

� is the same as that
of the solution without the KL. The thermal conductivity of
the different samples was measured and we found ���w for
all the samples. With these values we can calculate the non-
dimensional parameters CT for all the aqueous solutions of
KL and the dye.

In the present section, the solutes are i=CR and KL. The
matter-lens signal is given by
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FIG. 2. Typical Z-scan experimental results of a lyotropic mix-
ture of water, KL, and CR, with �t=4.4 s and �KL �=1.127
�10−3� below the CMC. 
 is the position of the sample in units of
z0. The solid curve shows the prediction of Eq. �9� with CN=0,
CT=−0.359, and CS=0.112 as obtained from the scan. The dotted
�dashed� curve shows the prediction of Eq. �9� with CN=0,
CT=−0.359, and CS=0 �CN=0, CT=0, and CS=0.112�.
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� = FS,CR
�n

��CR
+ FS,KL

�n

��KL
, �17�

where FS,CR and FS,KL are the Soret functions of CR and KL.
From the phenomenological thermodiffusion equations of
Appendix A, those functions can be expressed as

FS,CR 

DT,CR

DCR
�CR

� −
DCR,KL

DCR

DT,KL

DKL
�KL, �18�

FS,KL 

DT,KL

DKL
�KL −

DKL,CR

DKL

DT,CR

DCR
�CR

� , �19�

where it is assumed that the nondiagonal diffusivities are
weak enough to neglect the product DCR,KLDKL,CR with re-
spect to DCRDKL. Each Soret function has a term propor-
tional to the mass fraction of the solute and a correction term

due to the diffusion coupling to the other solute. When KL
dominates CR, FS,KL is expected to be little affected by the
CR fraction. Since the available experimental points are such
that �KL��CR

� , one can simplify the Soret functions to

FS,CR 
 ST,CR�CR
� −

DCR,KL

DCR
ST,KL�KL,

FS,KL 
 ST,KL�KL,

letting ST,CR=DT,CR /DCR and ST,KL=DT,KL /DKL. A linear re-
lationship �=a+b�KL is obtained where

a = ST,CR�CR
� � �n

��CR
� , �20�

b = ST,KL�� �n

��KL
� −

DCR,KL

DCR
� �n

��CR
�� . �21�

This is consistent with the experimental plot �Eq. �15��. From
a we get the value ST,CR=0.55 K−1. In the aqueous solution
of CR, we found ST,CR=0.75 K−1. We consider that the
agreement is reasonable in view of the approximation of con-
stancy of the diffusivities and the omission of DKL,CR /DKL.
The slope b yields an equation with two unknowns,

− 4.47 � 10−2 = ST,KL�0.18 − 0.511
DCR,KL

DCR
� . �22�

As ST,KL also plays a role above the CMC, we now turn to
that concentration range.

2. KL concentrations above the CMC

Figure 5 shows the index of refraction of aqueous solu-
tions of KL and CR, with �KL above the CMC, as a function
of the temperature. These data were also used to determine
�n /�cKL, with cKL denoting the molar concentration of KL.
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FIG. 4. �a� Index of refraction of aqueous solutions of KL and
CR, below the CMC, as a function of the temperature: �KL

= ��� 0.63�10−3; ��� 1.13�10−3; ��� 1.41�10−3; ��� 1.72
�10−3. �b� �n /�T as a function of �KL.

20 25 30 35 40
1.330

1.335

1.340

1.345

In
de
x
of
re
fra

ct
io
n

T (oC)

FIG. 5. Index of refraction of aqueous solutions of KL and CR,
with �KL above the CMC, as a function of the temperature: cKL

= ��� 0.04M; ��� 0.08M; ��� 0.12M; ��� 0.20M; ��� 0.32M.
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The measured values of �n /�T and �n /�cKL are
−�1.22�0.02��10−4 K−1 and �3.49�0.05��10−2M−1, re-
spectively. The measured optical absorbance of the aqueous
solution of CR and free and micellar KL, at cCR=40 �M,
is the same as the one measured in the solution without
KL. The ratio of the total number of KL molecules �either
free or bound in micelles� to the number of CR molecules
is of the order of 103–104. The thermal conductivity of the
different samples was measured by using the ZS data
and the thermal-lens model, and we found an empirical
�fitting� expression �KL=�w�0.332�exp�−8.2215�cKL�
−0.668� W m−1 K−1. With these values we can calculate the
nondimensional parameters CT for all the aqueous solutions
of KL and the dye. The ZS experiment gives access to �
through CS.

Above the CMC, we introduce the approximation of a
quasiternary mixture �water, free KL, and micelles�, omitting
the CR. Then,

� = FS,KL� �n

��KL
� + FS,m� �n

��m
� . �23�

We use the same reasoning as previously in order to reduce
the number of transport parameters, keeping only the most
pertinent ones: KL abounds whereas there are few micelles.
Therefore, transport of KL is almost unaffected by the mi-
celles �DKL,m
0�,

FS,KL 
 ST,KL�c, �24�

given that the mass fraction of KL stays equal to its value at
the CMC. In contrast, the transport of the few micelles can
be affected by the presence of abundant KL,

FS,m 
 ST,m�m −
Dm,KL

Dm
ST,KL�c, �25�

where �m=�KL−�c and we let ST,m=DT,m /Dm. We obtain
�=�+��KL, where

� = �c�ST,KL� �n

��KL
� − �ST,m +

Dm,KL

Dm
ST,KL�� �n

��m
�� ,

�26�

� = ST,m� �n

��m
� . �27�

This is consistent with the experimental plot of ���KL�
above the CMC, namely, Eq. �16�. From � we get ST,m
= �3.2�1.6��10−3 K−1. Expressing � /�c+� yields an
equation with two unknowns,

− 1.28 � 10−2 = ST,KL�0.18 − 0.14
Dm,KL

Dm
� . �28�

Summarizing our findings, we have obtained two equations,
�22� and �28�, with three unknowns, namely, ST,KL,
DCR,KL /DCR, and Dm,KL /Dm. We do not have enough infor-
mation to determine each unknown exactly. Let us pause
here before continuing the resolution. In the single-solute
case there are two transport parameters, D and DT, and the
ZS method determines ST=DT /D. So the method determines

DT if D is known independently. In the N-solute case, there
are N2+N transport parameters. If we can vary the mass
fraction �i of each solute i and measure the ensuing �� /��i,
then the measurement of � will determine the N thermodif-
fusion coefficients �DT,i� provided that the diffusion matrix
�Di,j� is known independently. In the present system, this is
not the case. Some of the diffusivities �e.g., DKL,CR and
DKL,m� play a negligible role because the transport of the
surfactant is little affected by the few dye molecules or mi-
celles. Yet we still have too many parameters compared to
the experimental data. However, it is possible to estimate
ST,KL. We shall make two hypotheses, and notice that they
entail the same sign and order of magnitude for ST,KL, to-
gether with the same qualitative picture.

As the first hypothesis, consider that KL hardly affects the
transport of CR below the CMC, i.e., DCR,KL
0. Then we
get ST,KL=−2.5�10−1 K−1 and Dm,KL /Dm=0.92. As the sec-
ond hypothesis, consider that KL hardly affects the transport
of the micelles above the CMC, i.e., Dm,KL
0. Then we get
ST,KL=−7.1�10−2 K−1 and DCR,KL /DCR=0.88.

In each case, the nondiagonal diffusivity is less than the
diagonal one, whereby our neglect of products of nondiago-
nal diffusivities is justified �remember that DKL,CR and DKL,m
were taken to be weak because the CR and micelle concen-
trations are small compared to that of KL�. As for ST,KL, the
two estimations have the same sign and differ by a factor of
3. In what follows, we shall retain the first estimation,
namely, ST,KL
−2.5�10−1 K−1. This is because, in the el-
ementary theory of coupled diffusion �see Appendix A�,
Dm,KL��m and DCR,KL��CR, and the lowest �m=4�10−3

greatly exceeds �CR
� =2.8�10−5. The following section inter-

prets the values found for ST,KL and ST,m.

3. Interpretation of ST,KL and ST,m

In the previous section we have been able to estimate
ST,KL
−2.5�10−1 K−1 and to determine ST,m= �3.2�1.6�
�10−3 K−1. The value of ST,m agrees in sign and order of
magnitude with that measured in a similar isotropic lyotropic
mixture by means of the ZS technique �26�, namely, 
5.5
�10−3 K−1 in a mixture of water, 1-decanol, and KL. Ar-
naud and Georges �22� used thermal-lens spectroscopy to
investigate the Soret effect of Brij 35 in aqueous solutions.
They observed a higher concentration of micelles in the
colder region of the sample, consistent with the sign of ST,m
found here. Piazza and Guarino �24� reported on experimen-
tal results on the Soret effect of micelles in solutions of so-
dium dodecyl sulfate and NaCl in water. The Soret coeffi-
cient was found to be positive and dependent on the
amphiphile concentration. All these results indicate that, de-
spite the differences in the micellar systems investigated, the
micelles show a thermophobic behavior.

On the other hand, unlike the micelles, the free KL mol-
ecules were found to show a thermophilic behavior accord-
ing to the terminology of the Soret effect. The discrepancy
between the responses of the surfactant and the micelles to a
temperature gradient is only apparent, as one of us has
shown elsewhere �32�. In the single-solute case, the phenom-
enological equation defining DT is a biased diffusion equa-
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tion �also called a drift-diffusion or migration-diffusion equa-
tion�, where the drift velocity is

vd = −
D

T
�TST −

d ln D

d ln T
� � T , �29�

and d ln D /d ln T can be estimated from the Stokes-Einstein
formula to be about +8.2 in water at 25 °C. At the particle
level, we are dealing with a biased random walk whose cen-
troid moves at vd and whose variance grows at a rate 2D per
space dimension �32�. Given that TST,m= + �0.95�0.47�, the
motion of the micelles �referred to as thermophoresis� occurs
along �T according to Eq. �29�, i.e., toward warmer T. The
fact that the micelles accumulate in the region of colder T
�reflected in ST,m�0� is due to the larger diffusivity in the
warmer region, which prevents them from gathering there.
Therefore thermodiffusion may be viewed as the superposi-
tion of a drift effect and a differential diffusion effect, ac-
cording to DT=−vd /�T+dD /dT. In other words, thermodif-
fusion �transport, embodied in a current density� should not
be confused with thermophoresis �motion, embodied in a ve-
locity� �32�. When vd is weak, the temperature dependence
dD /dT of diffusivity prevails in DT. Thus, if we consider the
thermophoretic velocities vd, the behavior of the micelles is
qualitatively similar to that of the surfactant molecules,
whatever the estimation of TST,KL
−21 to −74. While both
the surfactant and the micelles tend to drift toward the
warmer region, they differ in the weaker sensitivity of the
micelles to �T.

So far our analysis has been purely phenomenological,
with no appeal to any specific theory or mechanism. We can
account for the observed weaker sensitivity of the micelles to
�T in the frame of a specific theory which correctly de-
scribed the thermodiffusion of colloidal particles in ionic fer-
rofluids �33�, and was rederived recently �34�. At a low mi-
cellar mass fraction �m, the theoretical formula is

TST,m = 1 + � �U

��kT���m

, �30�

where U�T ,�m� is the energy of interaction of a micelle with
its surroundings, and k is the Boltzmann constant. Since
��U /��kT���m

=−�0.05�0.47�, this suggests that U is low in
the case of micelles. In contrast, TST,KL
−74 implies
��U /��kT���KL


−75. Now KL in a trans configuration may
be sketched as a cylinder of 1.7 nm length and 0.5 nm diam-
eter, while the micelles have about 100 molecules and may
be sketched as spheres of 10 nm diameter. Surfactant mol-
ecules and micelles strongly differ with respect to their in-
teraction with water. Surfactant molecules are amphiphiles
�with polar and nonpolar groups in the same molecule� and
the KL aggregated in direct micelles exposes the polar group
to the water molecules, thereby preventing contact of the
paraffinic chains with water. One thus understands that the
micellization reduces the interaction energy U of the ball of
KL molecules with the solvent. This, in turn, reduces the
interaction contribution to TST in Eq. �30�, consistent with
the finding ��U /��kT���m

=−0.05 instead of ��U /��kT���KL

−75. It is noteworthy that the chemical dissimilarity be-
tween the surfactant molecules and the micelles caused by

the micellization entails an interaction between them, ac-
counting for a nonvanishing value of Dm,KL �see Appendix
B�, but we do not know of a model predicting that value.

V. CONCLUSIONS

In this paper, we have shown that the Z-scan technique
and a generalization of the thermal-lens model described in
Ref. �26� can be used to investigate the Soret effect. The
technique allows one to isolate a matter-lens contribution �
which is a linear combination of the mass gradients. The
phenomenology of multicomponent thermodiffusion ex-
presses � as a function of thermodiffusion and diffusion co-
efficients �both diagonal and nondiagonal�. If the latter coef-
ficients are known independently, the former are inferred
from �� /��i. Otherwise, Soret ratios can be obtained within
certain limits. The method, which combines the Z-scan tech-
nique and the phenomenology of multicomponent thermod-
iffusion, is not restricted to the particular system considered
in this paper, and it can be applied to study thermodiffusion
in any complex fluid. We have found that the response of the
mixture of amphiphilic molecules and water is sensitive to
the aggregation state of that mixture. The matter-lens signal
���KL� exhibits a sharp variation around the CMC. The
jump in � just above the CMC is due to the nondiagonal
diffusivity Dm,KL expressing the sensitivity of micelle diffu-
sion to the gradient in the mass fraction of free KL. The
change in the slope �� /��KL is due to the very different
Soret ratios of the surfactant and the micelles. Although the
Soret ratios have opposite signs, the thermophoreses of both
species occur toward warmer temperatures. The sharp differ-
ence in the Soret ratios endows ���KL� with the capacity of
evidencing the micelle formation in the lyotropic mixture
and determining the CMC.
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APPENDIX A

In an isothermal multicomponent solution, it is known
�35–37� that the diffusion of a solute 1 may be affected by
that of cosolutes 2,3, . . . , and conversely. This is manifested
in nondiagonal diffusivities Dij in addition to the usual �di-
agonal� diffusivities Dii,

j1 = − D11 � �1 − D12 � �2 − D13 � �3 . . . , �A1�

j2 = − D21 � �1 − D22 � �2 − D23 � �3 . . . , �A2�

etc. The nondiagonal Dij refers to the dependence of current
density ji of species i on the gradient �� j of species j� i.
While in most problems Dii may be taken as independent of
�i to a very good approximation, this is not true of Dij. If
�i→0, there can be no current of species i even though �� j
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takes important values. Therefore Dij is a function of �i that
vanishes with �i. This can be seen in the elementary theory
of nondiagonal diffusivities, where ji is proportional to �i
and to the gradient of the chemical potential of species i.
That chemical potential depends on � j because the solution
is not ideal in the thermodynamical sense �35�: there is an
interaction between i and j, in which the solvent also plays a
role. This interaction is the reason why a gradient of species
j entails a flow of i. In the present paper, we approximate Dij
to a constant value as long as �i does not take vanishingly
low values. Therefore, in Eqs. �A1� and �A2� ji is treated as
a linear combination of the gradients with constant coeffi-
cients.

Note that most presentations of multicomponent diffusion
are based upon the mixture framework, where all the compo-
nents 0,1,2,3, . . . are treated on the same footing. Instead, we
use the solution framework, where the solvent 0 is treated
differently, owing to its abundance ��0
1�. Its transport j0 is
not considered. Also, note that expressions �A1� and �A2� of
the current densities are not modified by a possible dynamic
exchange equilibrium between species 1 and 2. Such an ex-
change is manifested as a contribution to ��i /�t adding up to
−� · ji in the right-hand side of the continuity equation for
species i. The steady state ��i /�t=0 hardly differs from ji
=0 if the exchange takes place on a time scale of the order of
a millisecond. This comes about because at the particle level
diffusion is a random walk whose steps have a typical time
scale equal to the momentum-relaxation time. The latter is
estimated from the Stokes-Einstein formula to be M /6
�R,
with M the mass of the diffusing particle, R its radius, and �
the dynamical viscosity of the solvent. Whether we are con-
sidering free KL or a micelle, the diffusion time step is al-
ways much shorter than a millisecond. As far as thermodif-
fusion is concerned, it only adds up a bias to the random
walk, making it asymmetric without changing its intrinsic
time scale M /6
�R.

In Eqs. �A1� and �A2�, the lesser importance of nondiago-
nal diffusivities is expected from the necessary positivity of
the diffusion matrix, which requires, for instance, D11D22
−D12D21�0. This is indeed found in experimental determi-
nations of diffusion matrices �35�.

When the multicomponent solution is not isothermal, the
structure of the phenomenological current equations is nec-
essarily �35–37� as follows:

j1 = − D11 � �1 − D12 � �2 − D13 � �3 ¯ − �1DT,1 � T ,

�A3�

j2 = − D21 � �1 − D22 � �2 − D23 � �3 ¯ − �2DT,2 � T ,

�A4�

etc. Each diffusion current is supplemented by a term pro-
portional to �T and to the mass fraction of the solute, in-
volving a thermodiffusion coefficient DT,i.

To see the change in the Soret effect of a species induced
by the diffusion coupling to other species, we shall solve
Eqs. �A3� and �A4� for the case of two solutes. In the steady

state, the vanishing of the currents yields a linear system of
two equations with the unknowns ��1 and ��2. The solu-
tion is

��1 = −
�1DT,1D22 − �2DT,2D12

D11D22 − D12D21
� T , �A5�

and similarly for ��2, owing to the symmetrical roles of 1
and 2. The Soret function FS,1 of 1, defined as the steady-
state value of −��1 /�T, is

FS,1��1,�2� =
�1DT,1D22 − �2DT,2D12

D11D22 − D12D21
. �A6�

Expression �A6� shows that, in general, the Soret function of
solute 1 will depend on the transport properties and mass
fractions of cosolutes 2,3, . . .. Two limiting cases are worth
treating. First, consider that �2��1 and �DT,2�� �DT,1�. Then,

FS,1 

DT,1

D11
�1 �A7�

is linear in �1, with the usual Soret coefficient DT,1 /D11. The
change due to the cosolute is of relative order �D12� /D11
�1. Second, consider that �2�DT,2���1�DT,1� and D12�0.
Then,

FS,1 

DT,2

D22
�−

D12

D11
��2. �A8�

In this case, FS,1 is proportional to �2 instead of �1, with the
following two prefactors: �i� the effective Soret coefficient
DT,2 /D22 of the cosolute, and �ii� a relative strength of dif-
fusion coupling, −D12 /D11. The Soret effect of 1 is largely
governed by the transport properties of 2. Since nondiagonal
diffusivities can have both signs, even the sign of FS,1 can be
changed by the diffusive coupling to the cosolute�s�.

From Eq. �A6�, the ZS observable �=FS,1��n /��1�
+FS,2��n /��2� will be, in general, a linear combination of the
mass fractions �1 and �2. Again, we consider the limiting
cases of weak and strong diffusion coupling. If the transports
of 1 and 2 are weakly coupled, �i.e., D12 and D21
0�, the
combination simplifies to

� = � �n

��1
��DT,1

D11
��1 + � �n

��2
��DT,2

D22
��2. �A9�

If the transport of 1 is controlled by 2, we expect, from Eq.
�A8�,

� = �� �n

��1
��−

D12

D11
� + � �n

��2
���DT,2

D22
��2, �A10�

i.e., ���2, and vice versa if 1↔2. Consequently, the plot of
� versus �2 allows us to detect whether the transports are
coupled or not.

APPENDIX B

The aim of this appendix is to establish the phenomeno-
logical formula for the variation in � as the CMC is crossed.
It is based on the approximate expressions of � used in Sec.
IV B 2. Below the CMC, � is
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�− = �ST,CR�CR
� −

DCR,KL

DCR
ST,KL�KL�� �n

��CR
�

+ ST,KL�KL� �n

��KL
� , �B1�

where �KL=�c. The contribution in �CR
� is then expected to

be negligible, whence

�− 
 �−
DCR,KL

DCR
� �n

��CR
� + � �n

��KL
��ST,KL�c. �B2�

Above the CMC, � is

�+ = ST,KL�c� �n

��KL
� + �ST,m�m −

Dm,KL

Dm
ST,KL�c�� �n

��m
� .

�B3�

Clearly the free surfactant contribution is the same in �− and
�+: it does not cause a discontinuity in �. The variation in �
around the CMC is due to �i� the presence of CR below the
CMC, as CR transport is controlled by the abundant KL
instead of the concentration of CR itself; and �ii� the pres-
ence of micelles above the CMC, as their transport is essen-
tially determined by abundant KL in the limit �m→0. As a
result of Eqs. �B2� and �B3�,

�+ − �− = �−
Dm,KL

Dm
� �n

��m
� +

DCR,KL

DCR
� �n

��CR
��ST,KL�c.

�B4�

The CR term in �+−�− is due to the fact that CR is taken
into account below the CMC while CR is disregarded be-
yond the CMC in the quasiternary approximation. For con-
sistency, we can write

�+ − �− 
 −
Dm,KL

Dm
� �n

��m
�ST,KL�c, �B5�

and this is the expression of �+−�− that we shall henceforth
discuss.

As noticed in Appendix A, in the limit �m→0 the nondi-
agonal diffusivity Dm,KL should vanish. The reason is that
isothermal transport of micelles is described by a current
density

jm = − Dm � �m − Dm,KL � �KL. �B6�

Now, if �m=0, there are no micelles to be transported,
whatever the concentration of KL. To ensure jm=0 as �m
=0, we should have Dm,KL→0 as �m→0. As a result, we
expect the discontinuity �+−�− to vanish at the CMC: �
should be a continuous function of �KL. Why is it, then, that
the experimental plot of ���KL� suggests otherwise? In our
experiment, we do not have enough experimental points to
actually check the limit �m→0. The lowest value of �m is
4�10−3, which is almost twice �c=6�10−3, so that the ac-
tual value of Dm,KL is not zero. So ���KL� can be portrayed
as a mathematically continuous function exhibiting a sharp
variation around the CMC because of the profound change
occurring in the system. The observed discontinuity in �
refers in fact to the difference in the linear fits before and
after the CMC. According to Appendix A, the validity of
linear fits excludes the range �m→0 where Dm,KL signifi-
cantly varies and drops to zero. Linear fits can be performed
because the function ���KL� in the close neighborhood of
the CMC is not accessed experimentally.

Finally, the reader can check that, whatever the hypothesis
used to calculate ST,KL in Sec. IV B 2, �+−�− keeps the
same value according to Eq. �B4�. Depending on the hypoth-
esis, the relative strength of diffusion coupling Dm,KL /Dm
ranges between 0 �KL has no effect on the diffusion of mi-
celles� and 0.92 �the effect of the KL gradient is comparable
to that of the micelle gradient�. In Sec. IV B 2 we argued that
the latter value is more likely.
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